论文标题

SMAP:安全多方可视化的关节降低方案

SMAP: A Joint Dimensionality Reduction Scheme for Secure Multi-Party Visualization

论文作者

Xia, Jiazhi, Chen, Tianxiang, Zhang, Lei, Chen, Wei, Chen, Yang, Zhang, Xiaolong, Xie, Cong, Schreck, Tobias

论文摘要

如今,随着数据变得越来越复杂和分布,数据分析通常涉及几个相关数据集,这些数据集存储在不同的服务器上,并且可能由不同的利益相关者拥有。尽管有新兴的需求可以在全球环境下为这些利益相关者提供其数据的完整图表,但是当将多方数据集融合到单个站点中以建立点级别的关系时,传统的视觉分析方法(例如降低维度降低)可能会揭示数据隐私。在本文中,我们将传统的T-SNE方法从单站点模式重新将其重新定为安全的分布式基础架构。我们提出了一个安全的多方计算的安全多方方案,该方案可以最大程度地减少数据泄漏的风险。可以选择使用汇总可视化来隐藏点级关系的披露。我们根据我们的方法SMAP构建了一个原型系统,以支持组织,计算和探索安全关节嵌入。我们通过三个案例研究证明了我们方法的有效性,其中之一是基于我们在现实世界应用中的部署。

Nowadays, as data becomes increasingly complex and distributed, data analyses often involve several related datasets that are stored on different servers and probably owned by different stakeholders. While there is an emerging need to provide these stakeholders with a full picture of their data under a global context, conventional visual analytical methods, such as dimensionality reduction, could expose data privacy when multi-party datasets are fused into a single site to build point-level relationships. In this paper, we reformulate the conventional t-SNE method from the single-site mode into a secure distributed infrastructure. We present a secure multi-party scheme for joint t-SNE computation, which can minimize the risk of data leakage. Aggregated visualization can be optionally employed to hide disclosure of point-level relationships. We build a prototype system based on our method, SMAP, to support the organization, computation, and exploration of secure joint embedding. We demonstrate the effectiveness of our approach with three case studies, one of which is based on the deployment of our system in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源