论文标题
Kids-1000宇宙学:多探针弱重力镜头和光谱星系聚类约束
KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints
论文作者
论文摘要
我们介绍了KILO度调查(KIDS-1000)的弱重力透镜观察的联合宇宙学分析,并从BARYON振荡光谱调查(BOSS)和Galaxy-Galaxy-Galaxy镜头观察中进行了红移空间星系群集观测,来自Kids-1000,Boss-1000,Boss和SpectRoss 2 eppsed 2 expredie 2 egrence fielders fielders fielders fielders fielders couse complapic comperive。大尺度结构探针的这种组合打破了个体可观察物的宇宙学参数之间的堕落,从而限制了结构增长参数$ s_8 =σ_8\ sqrt {ω__{ω_{\ rm m} /0.3} /0.3}来自普朗克的全身宇宙微波背景观测。相对于普朗克,回收的$ s_8 $振幅较低,但是$ 8.3 \ pm 2.6 $%。该结果源于一系列的Kids-1000分析,我们通过可变的深度模拟星系调查来验证我们的方法,我们使用图像模拟和无效测试的透镜校准以及我们的光学到新的红外红移校准校准以及多频带模拟目录和A spectroscopic-Phososcopic-Photsphotphotphots-Photem-Phots-Phots Clustress Clustress Cluster分析。在我们的宇宙学分析中,通过这些分析确定的系统不确定性折叠为滋扰参数。检查边缘化后分布之间的偏移,我们发现与普朗克的$ s_8 $差异是由物质波动振幅参数($σ_8$)驱动的。我们使用一系列不同的指标量化了CMB与我们的大规模结构约束之间的一致性水平,找到了差异,其显着性在$ \ sim \之间! 3 \,σ$,考虑$ s_ {8} $中的偏移量和$ \ sim \!当考虑完整的多维参数空间时,2 \,σ$。
We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS), and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS and the spectroscopic 2-degree Field Lensing Survey (2dFLenS). This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter $S_8=σ_8 \sqrt{Ω_{\rm m}/0.3} = 0.766^{+0.020}_{-0.014}$, that has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck. The recovered $S_8$ amplitude is low, however, by $8.3 \pm 2.6$ % relative to Planck. This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the $S_8$-difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, $σ_8$. We quantify the level of agreement between the CMB and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between $\sim\! 3\,σ$, when considering the offset in $S_{8}$, and $\sim\! 2\,σ$, when considering the full multi-dimensional parameter space.