论文标题

策划长期向量图

Curating Long-term Vector Maps

论文作者

Nashed, Samer, Biswas, Joydeep

论文摘要

自主服务移动机器人仍需要始终如一,准确和牢固地本地化在人类环境中,尽管随着时间的推移发生了这种环境的变化。情节性非马尔科夫本地化通过将观察值分类为长期,短期或动态特征,以解决这种不断变化的环境中本地化的挑战。但是,为了这样做,ENML依赖于不会随着时间而变化的长期向量图(LTVM)的估计。在本文中,我们引入了一种递归算法,通过推理在多个机器人部署上观察到的对象的可见性约束来构建和更新LTVM。我们使用签名的距离函数(SDF)来滤除来自机器人多个部署的短期和动态特征的观察。其余的长期观察结果用于通过稳健的局部线性回归来构建向量图。所得LTVM的不确定性是通过蒙特卡洛重新采样长期特征引起的观察结果来计算的。通过将观测值的基于占用网格的SDF过滤与过滤的观测值的连续空间回归相结合,我们提出的方法随着时间的推移构建,更新和修改LTVM,从而推理了环境中所有机器人部署的所有观测值。我们提出了实验结果,证明了从几个长期机器人数据集中提取的LTVM的准确性,鲁棒性和紧凑性。

Autonomous service mobile robots need to consistently, accurately, and robustly localize in human environments despite changes to such environments over time. Episodic non-Markov Localization addresses the challenge of localization in such changing environments by classifying observations as arising from Long-Term, Short-Term, or Dynamic Features. However, in order to do so, EnML relies on an estimate of the Long-Term Vector Map (LTVM) that does not change over time. In this paper, we introduce a recursive algorithm to build and update the LTVM over time by reasoning about visibility constraints of objects observed over multiple robot deployments. We use a signed distance function (SDF) to filter out observations of short-term and dynamic features from multiple deployments of the robot. The remaining long-term observations are used to build a vector map by robust local linear regression. The uncertainty in the resulting LTVM is computed via Monte Carlo resampling the observations arising from long-term features. By combining occupancy-grid based SDF filtering of observations with continuous space regression of the filtered observations, our proposed approach builds, updates, and amends LTVMs over time, reasoning about all observations from all robot deployments in an environment. We present experimental results demonstrating the accuracy, robustness, and compact nature of the extracted LTVMs from several long-term robot datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源