论文标题

抵抗:从模板中重建虹膜

Resist : Reconstruction of irises from templates

论文作者

Ahmad, Sohaib, Geiger, Christopher, Fuller, Benjamin

论文摘要

虹膜识别系统将虹膜图像转换为特征向量。开创性管道将图像片段片段置于虹膜和非IRIS像素中,将该区域归一化为固定尺寸矩形,并提取了存储并称为模板的特征(Daugman,2009)。该模板存储在系统上。可以对虹膜进行未来的读数,并与模板向量进行比较,以确定或验证个体的身份。由于模板通常被一起存储在一起,因此它们是攻击者的宝贵目标。我们展示了如何在各种虹膜识别系统中反转模板。也就是说,我们展示了如何将模板转换为现实的虹膜图像,这些图像也被相应的识别系统视为相同的虹膜。我们的反转是基于我们称之为抗拒的卷积神经网络体系结构(从模板中重建虹膜)。我们对传统的Gabor滤波器管道进行抗拒,并将其用于Densenet(Huang等,CVPR 2017)的特征提取器,以及无正常化的densenet架构。这两个登录提取器均基于最近的第三眼识别系统(Ahmad and Fuller,BTAS 2019)。在使用ND-0405数据集进行训练和测试时,重建图像的三个管道的排名1精度分别为100%,76%和96%。我们方法的核心类似于自动编码器。但是,独立训练核心的精度较低。最终体系结构集成到生成的对抗网络(Goodfellow等人,Neurips,2014)中,产生了更高的精度。

Iris recognition systems transform an iris image into a feature vector. The seminal pipeline segments an image into iris and non-iris pixels, normalizes this region into a fixed-dimension rectangle, and extracts features which are stored and called a template (Daugman, 2009). This template is stored on a system. A future reading of an iris can be transformed and compared against template vectors to determine or verify the identity of an individual. As templates are often stored together, they are a valuable target to an attacker. We show how to invert templates across a variety of iris recognition systems. That is, we show how to transform templates into realistic looking iris images that are also deemed as the same iris by the corresponding recognition system. Our inversion is based on a convolutional neural network architecture we call RESIST (REconStructing IriSes from Templates). We apply RESIST to a traditional Gabor filter pipeline, to a DenseNet (Huang et al., CVPR 2017) feature extractor, and to a DenseNet architecture that works without normalization. Both DenseNet feature extractors are based on the recent ThirdEye recognition system (Ahmad and Fuller, BTAS 2019). When training and testing using the ND-0405 dataset, reconstructed images demonstrate a rank-1 accuracy of 100%, 76%, and 96% respectively for the three pipelines. The core of our approach is similar to an autoencoder. However, standalone training the core produced low accuracy. The final architecture integrates into an generative adversarial network (Goodfellow et al., NeurIPS, 2014) producing higher accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源