论文标题

高斯工艺先验的非线性反问题中贝叶斯不确定性定量的统计保证

Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors

论文作者

Monard, François, Nickl, Richard, Paternain, Gabriel P.

论文摘要

考虑了一类非线性反回归模型中的贝叶斯推断和不确定性定量。提供了回归模型$ \ {\ mathscr g(θ)的分析条件:θ\} $中的θ\和$θ$的高斯工艺先验,因此,对于$θ$的大量线性功能,可以进行半参数效率的推断。证明了一般的半参数伯恩斯坦 - 冯·米斯定理,表明(非高斯)后分布是由以后均值为中心的某些高斯措施近似的。因此,从经常观点的角度来看,基于后验的可靠集是有效的。该理论用在非线性断层扫描问题中出现的两个PDE的应用进行了说明:schrödinger方程的椭圆逆问题和非亚伯X射线变换的反转。部署了新的分析技术,以表明相关的Fisher信息操作员在合适的功能空间之间可逆

Bayesian inference and uncertainty quantification in a general class of non-linear inverse regression models is considered. Analytic conditions on the regression model $\{\mathscr G(θ): θ\in Θ\}$ and on Gaussian process priors for $θ$ are provided such that semi-parametrically efficient inference is possible for a large class of linear functionals of $θ$. A general semi-parametric Bernstein-von Mises theorem is proved that shows that the (non-Gaussian) posterior distributions are approximated by certain Gaussian measures centred at the posterior mean. As a consequence posterior-based credible sets are valid and optimal from a frequentist point of view. The theory is illustrated with two applications with PDEs that arise in non-linear tomography problems: an elliptic inverse problem for a Schrödinger equation, and inversion of non-Abelian X-ray transforms. New analytical techniques are deployed to show that the relevant Fisher information operators are invertible between suitable function spaces

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源