论文标题
在磁化太阳突出线中对雷利 - 泰勒不稳定性的两流体模拟。 I.突出磁化和质量负荷的影响
Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. I. Effects of prominence magnetization and mass loading
论文作者
论文摘要
太阳突出是由部分离子化的血浆形成的,粒子间碰撞频率通常需要磁性流血动力处理。在这项工作中,当离子中性碰撞并不能完全搭配中性和带电的流体时,我们探讨了参数方案中两流体效应的动力学影响和可观察的特征。我们在太阳突出线和电晕之间的平稳变化界面上对雷利 - 泰勒不稳定性(RTI)进行2.5D两流体(电荷 - 中性)模拟。这项研究的目的是加深我们对使用非线性两流体数值模拟的RTI的理解以及部分电离对RTI发展的影响。我们的两流体模型考虑了中性和电荷之间的粘度,导热率和碰撞相互作用:电离/重组,能量和动量转移以及摩擦加热。在本文I中,RTI动力学对突出平衡构型的敏感性,包括磁场强度和支撑突出线的剪切的影响,以及探索突出质量加载的量。我们表明,在小尺度上,现实平滑的突出界面界面会导致定性线性RTI的演变与不连续界面的预期相比,而磁场剪切具有降低生长速率或消除不稳定性的稳定效果。在非线性阶段,我们观察到,在存在场的情况下,剪切不稳定性的发展会导致相干和相互作用的2.5D磁性结构的形成,这反过来又可以导致磁场线跨磁场线的实质性血浆流以及电荷和中性速度的流体速度相关。
Solar prominences are formed by partially ionized plasma with inter-particle collision frequencies generally warranting magnetohydrodynamic treatment. In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. We perform 2.5D two-fluid (charges - neutrals) simulations of the Rayleigh-Taylor instability (RTI) at a smoothly changing interface between a solar prominence thread and the corona. The purpose of this study is to deepen our understanding of the RTI and the effects of the partial ionization on the development of RTI using non-linear two-fluid numerical simulations. Our two-fluid model takes into account viscosity, thermal conductivity, and collisional interaction between neutrals and charges: ionization/recombination, energy and momentum transfer, and frictional heating. In this paper I, the sensitivity of the RTI dynamics to the prominence equilibrium configuration, including the impact of the magnetic field strength and shear supporting the prominence thread, and the amount of prominence mass-loading is explored. We show that, at small scales, a realistically smooth prominence-corona interface leads to qualitatively different linear RTI evolution than that expected for a discontinuous interface, while magnetic field shear has the stabilizing effect of reducing the growth rate or eliminating the instability. In the non-linear phase, we observe that in the presence of field shear the development of the instability leads to formation of coherent and interacting 2.5D magnetic structures, which, in turn, can lead to substantial plasma flow across magnetic field lines and associated decoupling of the fluid velocities of charges and neutrals.