论文标题
在表面上自行群体中铣削模式的稳定性
Stability of milling patterns in self-propelled swarms on surfaces
论文作者
论文摘要
在某些物理和生物群中,代理有效地沿弯曲表面移动和相互作用。相关的约束和对称性可能会影响集体运动模式,但是在存在表面曲率的情况下模式稳定性知之甚少。为了取得进步,我们构建了一个使用拉格朗日力学在表面上移动的自行群体的通用模型。我们发现,自我刺激,摩擦,相互吸引力和表面曲率的结合产生铣削模式,其中群中的每个试剂在极限周期中都会振荡,并且沿周期散布不同的试剂,以使群的中心质量保持固定。通常,当相互吸引力不足以克服曲率的限制时,这种模式就会松散稳定性,我们发现了两种广泛的固定铣削状态分叉。首先,随着曲率的增加,空间周期性模式会经历HOPF分叉,从而导致时空振荡不稳定。分析了该球体的通用分叉,并在数字上为几个表面进行了证明。第二个,发生了一个鞍形的细胞,发生稳定且不稳定的铣削状态碰撞和歼灭。后者分析了圆柱体表面上的铣削状态。我们的结果有助于在表面曲率存在下对群体模式形成和稳定性的一般理解,并可能有助于设计可以控制以在复杂表面上移动的机器人群。
In some physical and biological swarms, agents effectively move and interact along curved surfaces. The associated constraints and symmetries can affect collective-motion patterns, but little is known about pattern stability in the presence of surface curvature. To make progress, we construct a general model for self-propelled swarms moving on surfaces using Lagrangian mechanics. We find that the combination of self-propulsion, friction, mutual attraction, and surface curvature produce milling patterns where each agent in a swarm oscillates on a limit cycle, with different agents splayed along the cycle such that the swarm's center-of-mass remains stationary. In general, such patterns loose stability when mutual attraction is insufficient to overcome the constraint of curvature, and we uncover two broad classes of stationary milling-state bifurcations. In the first, a spatially periodic mode undergoes a Hopf bifurcation as curvature is increased which results in unstable spatiotemporal oscillations. This generic bifurcation is analyzed for the sphere and demonstrated numerically for several surfaces. In the second, a saddle-node-of-periodic-orbits occurs in which stable and unstable milling states collide and annihilate. The latter is analyzed for milling states on cylindrical surfaces. Our results contribute to the general understanding of swarm pattern-formation and stability in the presence of surface curvature, and may aid in designing robotic swarms that can be controlled to move over complex surfaces.