论文标题
使用电动汽车的手机运输计划的拥堵管理
Congestion Management for Mobility-on-Demand Schemes that use Electric Vehicles
论文作者
论文摘要
迄今为止,大多数通勤者使用其使用内燃机的私人车辆。该运输模型遭受了低速利用的影响,并引起环境污染。本文研究了在按需(MOD)计划中运行的电动汽车(EV)的使用,并应对相关的管理挑战。我们假设许多客户充当合作代理,要求一组在许多接送站中分发的替代旅行和电动汽车。在这种情况下,我们提出了拥堵管理算法,将旅行请求作为输入,并计算出EV到客户的分配,目的是通过保持系统在匹配的需求和供应方面保持平衡,以最大程度地提高行程执行。我们提出了一种混合组件编程(MIP)最佳离线解决方案,该解决方案充分了解客户需求和同等的在线贪婪算法,可以实时运行。在线算法使用三种替代启发式功能来决定是否执行客户请求:(a)所有电台中所有电动汽车的平方之和(b)Trips的目的地位置饱满度的百分比以及(c)随机选择旅行执行。通过详细的评估,我们观察到(a)与(b)和(b)相比,在平均行程执行方面,(b)和最多11.5%的增加了高达4.8%,而所有这些都可以达到(c),而所有这些方面都可以实现接近最佳性能。同时,最佳扩展到由十分之一的电动汽车和数百个客户请求组成的设置。
To date the majority of commuters use their privately owned vehicle that uses an internal combustion engine. This transportation model suffers from low vehicle utilization and causes environmental pollution. This paper studies the use of Electric Vehicles (EVs) operating in a Mobility-on-Demand (MoD) scheme and tackles the related management challenges. We assume a number of customers acting as cooperative agents requesting a set of alternative trips and EVs distributed across a number of pick-up and drop-off stations. In this setting, we propose congestion management algorithms which take as input the trip requests and calculate the EV-to-customer assignment aiming to maximize trip execution by keeping the system balanced in terms of matching demand and supply. We propose a Mixed-Integer-Programming (MIP) optimal offline solution which assumes full knowledge of customer demand and an equivalent online greedy algorithm that can operate in real time. The online algorithm uses three alternative heuristic functions in deciding whether to execute a customer request: (a) The sum of squares of all EVs in all stations, (b) the percentage of trips' destination location fullness and (c) a random choice of trip execution. Through a detailed evaluation, we observe that (a) provides an increase of up to 4.8% compared to (b) and up to 11.5% compared to (c) in terms of average trip execution, while all of them achieve close to the optimal performance. At the same time, the optimal scales up to settings consisting of tenths of EVs and a few hundreds of customer requests.