论文标题

G-crewe:嵌入式网络对齐的图形压缩

G-CREWE: Graph CompREssion With Embedding for Network Alignment

论文作者

Qin, Kyle K., Salim, Flora D., Ren, Yongli, Shao, Wei, Heimann, Mark, Koutra, Danai

论文摘要

网络对齐对于需要处理越来越大图的多个应用程序很有用。现有研究将其作为优化问题或基于节点表示的相似性计算。但是,在相对较大的网络之间对齐每对节点的过程是耗时和资源密集的。在本文中,我们提出了一个称为G-crewe(带有嵌入的图形压缩)的框架,以解决网络对齐问题。 G-crewe使用节点嵌入在两个级别的分辨率上对齐网络,原始网络给出的精细分辨率和压缩版本给出的粗分辨率,以实现有效的网络对齐。框架首先提取节点特征,并通过图形卷积网络(GCN)学习节点嵌入。然后,节点嵌入有助于指导图形压缩过程,并最终改善对齐性能。作为G-crewe的一部分,我们还提出了一种称为合并(最低度邻居压缩)的新压缩机制,以减少输入网络的大小,同时保留其拓扑结构的一致性。所有真实网络上的实验表明,我们的方法的速度是现有最具竞争力的方法的两倍以上,同时保持高精度。

Network alignment is useful for multiple applications that require increasingly large graphs to be processed. Existing research approaches this as an optimization problem or computes the similarity based on node representations. However, the process of aligning every pair of nodes between relatively large networks is time-consuming and resource-intensive. In this paper, we propose a framework, called G-CREWE (Graph CompREssion With Embedding) to solve the network alignment problem. G-CREWE uses node embeddings to align the networks on two levels of resolution, a fine resolution given by the original network and a coarse resolution given by a compressed version, to achieve an efficient and effective network alignment. The framework first extracts node features and learns the node embedding via a Graph Convolutional Network (GCN). Then, node embedding helps to guide the process of graph compression and finally improve the alignment performance. As part of G-CREWE, we also propose a new compression mechanism called MERGE (Minimum dEgRee neiGhbors comprEssion) to reduce the size of the input networks while preserving the consistency in their topological structure. Experiments on all real networks show that our method is more than twice as fast as the most competitive existing methods while maintaining high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源