论文标题
深神经网络的噪声反应分析量化了鲁棒性和指纹结构恶意软件
Noise-Response Analysis of Deep Neural Networks Quantifies Robustness and Fingerprints Structural Malware
论文作者
论文摘要
深度神经网络(DNN),基于云的训练和转移学习的无处不在,这引起了新的网络安全边界,在该领域中,不安全的DNN具有“结构性恶意软件”(即重量和激活途径)。特别是,DNN可以设计为具有后门,使对手可以通过添加称为触发器的像素模式来轻松而可靠地愚弄图像分类器。通常很难检测到后门,现有的检测方法在计算上很昂贵,需要大量资源(例如,访问培训数据)。在这里,我们提出了一种快速的特征生成技术,该技术量化了DNN的鲁棒性,“指纹”其非线性,并允许我们检测后门(如果存在)。我们的方法涉及研究DNN如何以不同的噪声强度响应噪声散发的图像,我们以滴定曲线进行了总结。我们发现,带有后门的DNN对输入噪声更敏感,并以揭示后门及其导致位置的特征方式响应(其“目标”)。我们的经验结果表明,我们可以准确地检测出比现有方法快(秒相比小时)快的置信顺序的后门。
The ubiquity of deep neural networks (DNNs), cloud-based training, and transfer learning is giving rise to a new cybersecurity frontier in which unsecure DNNs have `structural malware' (i.e., compromised weights and activation pathways). In particular, DNNs can be designed to have backdoors that allow an adversary to easily and reliably fool an image classifier by adding a pattern of pixels called a trigger. It is generally difficult to detect backdoors, and existing detection methods are computationally expensive and require extensive resources (e.g., access to the training data). Here, we propose a rapid feature-generation technique that quantifies the robustness of a DNN, `fingerprints' its nonlinearity, and allows us to detect backdoors (if present). Our approach involves studying how a DNN responds to noise-infused images with varying noise intensity, which we summarize with titration curves. We find that DNNs with backdoors are more sensitive to input noise and respond in a characteristic way that reveals the backdoor and where it leads (its `target'). Our empirical results demonstrate that we can accurately detect backdoors with high confidence orders-of-magnitude faster than existing approaches (seconds versus hours).