论文标题

对比度网络分析的视觉分析框架

A Visual Analytics Framework for Contrastive Network Analysis

论文作者

Fujiwara, Takanori, Zhao, Jian, Chen, Francine, Ma, Kwan-Liu

论文摘要

一个常见的网络分析任务是对两个网络的比较,以识别一个网络中相对于另一个网络的独特特征。例如,在比较源自正常和癌症组织的蛋白质相互作用网络时,一项必不可少的任务是发现蛋白质 - 蛋白质相互作用的相互作用。但是,当网络包含复杂的结构(和语义)关系时,此任务具有挑战性。为了解决这个问题,我们设计了Contrana,这是一个视觉分析框架,利用机器学习的力量来揭示网络中的独特特征以及可视化的有效性,以理解这种唯一性。 Contrana的基础是CNRL,它集成了两个机器学习方案,网络表示学习(NRL)和对比度学习(CL),以生成一个低维的嵌入,与另一个网络相比,揭示了一个网络的独特性。 Contrana提供了一个交互式可视化界面,可以通过将嵌入结果和网络结构与CNRL解释学习特征来帮助分析唯一性。我们使用现实世界数据集证明了Contrana对两个案例研究的有用性。我们还通过对网络比较任务的12名参与者进行对照用户研究进行评估。结果表明,参与者能够有效地从复杂网络中确定独特的特征,并解释从CNRL获得的结果。

A common network analysis task is comparison of two networks to identify unique characteristics in one network with respect to the other. For example, when comparing protein interaction networks derived from normal and cancer tissues, one essential task is to discover protein-protein interactions unique to cancer tissues. However, this task is challenging when the networks contain complex structural (and semantic) relations. To address this problem, we design ContraNA, a visual analytics framework leveraging both the power of machine learning for uncovering unique characteristics in networks and also the effectiveness of visualization for understanding such uniqueness. The basis of ContraNA is cNRL, which integrates two machine learning schemes, network representation learning (NRL) and contrastive learning (CL), to generate a low-dimensional embedding that reveals the uniqueness of one network when compared to another. ContraNA provides an interactive visualization interface to help analyze the uniqueness by relating embedding results and network structures as well as explaining the learned features by cNRL. We demonstrate the usefulness of ContraNA with two case studies using real-world datasets. We also evaluate through a controlled user study with 12 participants on network comparison tasks. The results show that participants were able to both effectively identify unique characteristics from complex networks and interpret the results obtained from cNRL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源