论文标题

集合预测主要太阳耀斑:结合模型的方法

Ensemble Forecasting of Major Solar Flares: Methods for Combining Models

论文作者

Guerra, Jordan A., Murray, Sophie A., Bloomfield, D. Shaun, Gallagher, Peter T.

论文摘要

运营空间天气预报的一个重要组成部分是太阳耀斑的预测。借助现在在线可用的多种耀斑预测方法,尚不清楚这些方法中的哪种方法最佳,没有比气候预测更好。太空天气研究人员越来越希望地面天气界使用的方法来改善当前的预测技术。多年来,合奏预测已在数值天气预测中已被用于结合不同预测以获得更准确的结果。在这里,我们通过线性结合一组操作预测方法(ASAP,ASSA,MAG4,MOSWOC,NOAA和MCSTAT)的全盘概率预测来构建用于主要太阳耀斑的合奏预测。从每种方法中的预测都由一个因素加权,该因素是该方法预测先前事件的能力的因素,并且考虑了几种性能指标(概率和分类)。发现大多数合奏要比单独的任何成员都获得更好的技能指标(在5 \%和15 \%之间)。此外,超过90 \%的合奏性能(通过预测属性来衡量)比简单的同等重量平均值更好。最后,集合不确定性高度依赖于优化的内部度量标准,并且概率大于0.2的概率小于20 \%。这种简单的多模型,线性整体技术可以为操作空间天气中心提供构建多功能集合预测系统的基础 - 改进其预测的起点,可以根据不同的最终用户需求量身定制。

One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Space weather researchers are increasingly looking towards methods used by the terrestrial weather community to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASAP, ASSA, MAG4, MOSWOC, NOAA, and MCSTAT). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. It is found that most ensembles achieve a better skill metric (between 5\% and 15\%) than any of the members alone. Moreover, over 90\% of ensembles perform better (as measured by forecast attributes) than a simple equal-weights average. Finally, ensemble uncertainties are highly dependent on the internal metric being optimized and they are estimated to be less than 20\% for probabilities greater than 0.2. This simple multi-model, linear ensemble technique can provide operational space weather centres with the basis for constructing a versatile ensemble forecasting system -- an improved starting point to their forecasts that can be tailored to different end-user needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源