论文标题

在有限场上的椭圆形曲线和有效函数的乘法依赖性图像的元素上

On elements of large order of elliptic curves and multiplicative dependent images of rational functions over finite fields

论文作者

Kerr, Bryce, Mello, Jorge, Shparlinski, Igor E.

论文摘要

令$ e_1 $和$ e_2 $是带有整数参数的legendre表单的椭圆曲线。我们显示存在一个常数的$ c $,因此对于几乎所有素数,除最多$ c $ c $ c $ c $ c $ c $ e_1 \ times e_2 $ e_2 $ modulo $ p $具有等于$ x $协调的时,至少有一个$ p_1 $和$ p_2 $有一个大集团订单。我们还显示出与元素有限磁场相似的丰度

Let $E_1$ and $E_2$ be elliptic curves in Legendre form with integer parameters. We show there exists a constant $C$ such that for almost all primes, for all but at most $C$ pairs of points on the reduction of $E_1 \times E_2$ modulo $p$ having equal $x$ coordinate, at least one among $P_1$ and $P_2$ has a large group order. We also show similar abundance over finite fields of elements whose images under the reduction modulo $p$ of a finite set of rational functions have large multiplicative orders

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源