论文标题

从表面和扩展的仿生Weyl组的群集代数

Cluster algebras from surfaces and extended affine Weyl groups

论文作者

Felikson, Anna, Lawson, John W., Shapiro, Michael, Tumarkin, Pavel

论文摘要

我们使用阳性半明确二次形式表征至少3个等级的突变 - 芬特群集代数。特别是,我们与每个不牢固的边界表面相关联,一个正半决的二次空间$ v $,并且每个三角剖分都是$ v $的基础,以使群集的任何突变(即三角剖分的翻转)通过部分反射将相应的基础转化为相应的基础。此外,每个三角剖分都会产生$ a $ a $的延长仿型Weyl群,这是不变的。该结构还扩展到了$ e $ $ e $的特殊偏斜突变 - 限制群集代数。

We characterize mutation-finite cluster algebras of rank at least 3 using positive semi-definite quadratic forms. In particular, we associate with every unpunctured bordered surface a positive semi-definite quadratic space $V$, and with every triangulation a basis in $V$, such that any mutation of a cluster (i.e., a flip of a triangulation) transforms the corresponding bases into each other by partial reflections. Furthermore, every triangulation gives rise to an extended affine Weyl group of type $A$, which is invariant under flips. The construction is also extended to exceptional skew-symmetric mutation-finite cluster algebras of types $E$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源