论文标题

DCSFN:单图降雨的深度跨尺度融合网络

DCSFN: Deep Cross-scale Fusion Network for Single Image Rain Removal

论文作者

Wang, Cong, Xing, Xiaoying, Su, Zhixun, Chen, Junyang

论文摘要

降雨是一项重要但具有挑战性的计算机视觉任务,因为雨条可能会严重降低可能使其他视觉或多媒体任务无法正常工作的图像的可见性。先前的工作主要集中在特征提取和处理或神经网络结构上,而当前的降雨方法已经可以取得了显着的结果,但基于单个网络结构而不考虑跨尺度关系的培训可能会导致信息退出。在本文中,我们探讨了网络与内尺度融合操作之间的跨尺度方式,以解决图像去除任务。具体而言,要学习具有不同尺度的特征,我们提出了一个多sub-Networks结构,其中这些子网络通过门通过式复发单元融合了内部学习,并在这些子网络中的不同尺度上充分利用信息。此外,我们设计了一个内部尺度连接块,以利用多尺度信息并在不同尺度之间具有融合方式以提高雨水表示能力,并通过跳过连接引入密集块以内部连接这些块。合成数据集和现实世界数据集的实验结果证明了我们提出的方法的优越性,这比最先进的方法优于最先进的方法。源代码将在https://supercong94.wixsite.com/supercong94上找到。

Rain removal is an important but challenging computer vision task as rain streaks can severely degrade the visibility of images that may make other visions or multimedia tasks fail to work. Previous works mainly focused on feature extraction and processing or neural network structure, while the current rain removal methods can already achieve remarkable results, training based on single network structure without considering the cross-scale relationship may cause information drop-out. In this paper, we explore the cross-scale manner between networks and inner-scale fusion operation to solve the image rain removal task. Specifically, to learn features with different scales, we propose a multi-sub-networks structure, where these sub-networks are fused via a crossscale manner by Gate Recurrent Unit to inner-learn and make full use of information at different scales in these sub-networks. Further, we design an inner-scale connection block to utilize the multi-scale information and features fusion way between different scales to improve rain representation ability and we introduce the dense block with skip connection to inner-connect these blocks. Experimental results on both synthetic and real-world datasets have demonstrated the superiority of our proposed method, which outperforms over the state-of-the-art methods. The source code will be available at https://supercong94.wixsite.com/supercong94.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源