论文标题

降低游戏,可增值性和紧凑性

Reduction games, provability, and compactness

论文作者

Dzhafarov, Damir D., Hirschfeldt, Denis R., Reitzes, Sarah C.

论文摘要

Hirschfeldt和Jockusch(2016)推出了一款两人游戏,其中一个或另一个玩家的赢得策略与$ \ \ \ \ m rasf {rca} _0 $ $的$π^1_2 $原理之间的含义和不插入。他们还引入了此游戏的一个版本,该版本类似地捕获了$ \ mathsf {rca} _0 $上的可普遍性。我们将此游戏理论框架概括并扩展到其他正式系统,并建立一个一定的紧凑性结果,这表明,在两个原则之间存在$ \ Mathsf {q} \至\ Mathsf {p} $之间,在两个原则之间存在,则存在一个胜利策略,可以在与特定的游戏中具有多个独立于游戏的数字界限的胜利,从而实现胜利。这种紧凑性结果概括了H. 〜Wang(1981)指出的旧证明理论事实,并在组合原理的反向数学上有应用。 我们还展示了该框架如何导致对数学问题的逻辑强度进行新的分析,从而完善了相反的数学和计算性理论观念(例如Weihrauch降低性)的逻辑强度,从而可以在某些方面与某些方面的使用,从而使这些方面有一个$π^1_2 $之间的优势,并且可以区分某些方面,以使这些方面与这些方面进行了区分,并且可以区分这些方面,以使这些方面与这些方面相区别,并且这些方面的使用范围是我们这些方面的范围。在证据中,与依靠其可计算性理论强度相反,是“纯粹的证明理论”。 我们将此分析的示例示例为$ \ mathsf {b}σ^0_2 $的许多原则,发现了它们逻辑优势之间的新差异。

Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between $Π^1_2$ principles over $ω$-models of $\mathsf{RCA}_0$. They also introduced a version of this game that similarly captures provability over $\mathsf{RCA}_0$. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication $\mathsf{Q} \to \mathsf{P}$ between two principles holds, then there exists a winning strategy that achieves victory in a number of moves bounded by a number independent of the specific run of the game. This compactness result generalizes an old proof-theoretic fact noted by H.~Wang (1981), and has applications to the reverse mathematics of combinatorial principles. We also demonstrate how this framework leads to a new kind of analysis of the logical strength of mathematical problems that refines both that of reverse mathematics and that of computability-theoretic notions such as Weihrauch reducibility, allowing for a kind of fine-structural comparison between $Π^1_2$ principles that has both computability-theoretic and proof-theoretic aspects, and can help us distinguish between these, for example by showing that a certain use of a principle in a proof is "purely proof-theoretic", as opposed to relying on its computability-theoretic strength. We give examples of this analysis to a number of principles at the level of $\mathsf{B}Σ^0_2$, uncovering new differences between their logical strengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源