论文标题
Rényi纠缠熵的动力学在扩散Qudit系统中
Dynamics of Rényi entanglement entropy in diffusive qudit systems
论文作者
论文摘要
我以前的工作[ARXIV:1902.00977]研究了Rényi纠缠熵的动力学$r_α$在局部量子电路中,并保存了电荷。在随机产品状态下初始化该系统,证明带有Rényi索引$α> 1 $的$R_α$如果电荷运输不快于扩散,则不会比“扩散性”(直至sublogarithmic校正)生长。仅针对量子或旋转$ 1/2 $系统提供了证明。在本说明中,我将证明扩展到Qudit系统,即具有本地尺寸$ d \ ge2 $的旋转系统。
My previous work [arXiv:1902.00977] studied the dynamics of Rényi entanglement entropy $R_α$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_α$ with Rényi index $α>1$ grows no faster than "diffusively" (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $d\ge2$.