论文标题

手性有效野外理论中的核电流

Nuclear Currents in Chiral Effective Field Theory

论文作者

Krebs, Hermann

论文摘要

在本文中,我们回顾了手性有效场理论中核电流计算的状态。在对统一转换技术及其在核电流中的应用正式讨论之后,我们将为向量,轴向矢量电流提供所有可用的表达式。向量和轴向矢量电流将讨论到订单$ q $,并从订单$ q^{ - 3} $开始,并进行付费贡献。伪凯尔和标量电流将讨论到订单$ q^0 $,并从订单$ q^{ - 4} $开始。这是核标量,伪cal,矢量和轴向矢量电流运算符的近代到接头订单(n $^3 $ lo)的完整表达式分析。讨论了通过转移 - 矩阵反转和统一转换技术计算得出的矢量和轴向向量电流之间的差异。一致正规化的重要性是一个强调的另一点:显示轴向矢量当前操作员缺乏一致的正则化,从而导致违反手性对称性在手性限制下以$ q $ $ q $。因此,在各种出版物中讨论的订单$ Q $的混合方法是不可应用的。为了尊重手性对称性,需要在核力量和当前操作员的构建中使用相同的正则化程序。尽管始终如一的正规化当前运营商的完整表达式尚未获得电磁荷载量运算符的等效部分,直至订购$ q $具有非常简单的表格,并且可以以一致的方式轻松地正规化。作为应用程序,我们通过量化的误差估计,回顾了我们最近对Deuteron电荷形式的高精度计算。

In this article, we review the status of the calculation of nuclear currents within chiral effective field theory. After formal discussion of the unitary transformation technique and its application to nuclear currents we will give all available expressions for vector, axial-vector currents. Vector and axial-vector currents will be discussed up to order $Q$ with leading-order contribution starting at order $Q^{-3}$. Pseudoscalar and scalar currents will be discussed up to order $Q^0$ with leading-order contribution starting at order $Q^{-4}$. This is a complete set of expressions in next-to-next-to-next-to-leading-order (N$^3$LO) analysis for nuclear scalar, pseudoscalar, vector and axial-vector current operators. Differences between vector and axial-vector currents calculated via transfer-matrix inversion and unitary transformation techniques are discussed. The importance of consistent regularization is an additional point which is emphasized: lack of consistent regularization of axial-vector current operators is shown to lead to a violation of the chiral symmetry in the chiral limit at order $Q$. For this reason, a hybrid approach at order $Q$, discussed in various publications, is non-applicable. To respect the chiral symmetry the same regularization procedure needs to be used in the construction of nuclear forces and current operators. Although full expressions of consistently regularized current operators are not yet available an isoscalar part of the electromagnetic charge operator up to order $Q$ has a very simple form and can be easily regularized in a consistent way. As an application, we review our recent high accuracy calculation of the deuteron charge form factor with a quantified error estimate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源