论文标题
通过多任务对抗CNN学习肿瘤的可解释的微观特征,以改善概括
Learning Interpretable Microscopic Features of Tumor by Multi-task Adversarial CNNs To Improve Generalization
论文作者
论文摘要
在初级诊断的日常诊断中采用卷积神经网络(CNN)不仅需要接近完美的精度,而且还需要对数据采集变化和透明度的足够概括。现有的CNN模型充当黑匣子,不确保医生认为模型使用重要的诊断功能。本文以成功现有的技术(例如多任务学习,域对抗培训和基于概念的解释性)为基础,该论文解决了在培训目标中引入诊断因素的挑战。在这里,我们表明,通过学习端到端学习多任务和对抗性损失的基于不确定性的加权组合,鼓励着专注于病理学特征,例如核的密度和多态性,例如。大小和外观的变化,同时丢弃诸如染色差异之类的误导性特征。我们在乳腺淋巴结组织上的结果显示,在肿瘤组织的检测中的概括显着改善,最佳平均AUC 0.89(0.01)对基线AUC 0.86(0.005)。通过应用线性探测中间表示的可解释性技术,我们还证明了可解释的病理特征(例如核密度)是通过提出的CNN结构来学习的,从而证实了该模型的透明度的提高。该结果是构建可解释的多任务架构的起点,这些架构对数据异质性具有鲁棒性。我们的代码可在https://github.com/maragraziani/multitask_adversarial上找到
Adopting Convolutional Neural Networks (CNNs) in the daily routine of primary diagnosis requires not only near-perfect precision, but also a sufficient degree of generalization to data acquisition shifts and transparency. Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model. Building on top of successfully existing techniques such as multi-task learning, domain adversarial training and concept-based interpretability, this paper addresses the challenge of introducing diagnostic factors in the training objectives. Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features such as density and pleomorphism of nuclei, e.g. variations in size and appearance, while discarding misleading features such as staining differences. Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005). By applying the interpretability technique of linearly probing intermediate representations, we also demonstrate that interpretable pathology features such as nuclei density are learned by the proposed CNN architecture, confirming the increased transparency of this model. This result is a starting point towards building interpretable multi-task architectures that are robust to data heterogeneity. Our code is available at https://github.com/maragraziani/multitask_adversarial