论文标题
带有几个正交互补分布的Riemannian歧管的积分公式
Integral formulas for a Riemannian manifold with several orthogonal complementary distributions
论文作者
论文摘要
在本文中,我们证明了Riemannian歧管的积分公式,并具有$ K> 2 $正交的互补分布,它推广了$ k = 2 $的知名公式,并为Riemannian流形的分裂和等距沉浸液提供了应用,尤其是wasted warped产品,尤其是乘积繁殖的繁殖型$ k> 2 $ 2 $ 2 $ 2 $ 2 $ 2 $ 2;
In the paper we prove integral formulae for a Riemannian manifold endowed with $k>2$ orthogonal complementary distributions, which generalize well-known formula for $k=2$ and give applications to splitting and isometric immersions of Riemannian manifolds, in particular, multiply warped products, and to hypersurfaces with $k>2$ distinct principal curvatures of constant multiplicities.