论文标题
具有给定段序列的树木的Steiner Wiener索引
The Steiner Wiener index of trees with a given segment sequence
论文作者
论文摘要
一组$ S $中顶点的坦Steiner距离是包含这些顶点的连接子图的最小尺寸。所有集合$ s基数$ k $的Steiner距离的总和称为Steiner $ K $ - WIENER索引,并研究了著名的Wiener in Chemical Graph理论的自然概括。在本文中,我们研究了具有给定片段序列的树木中的极端结构,从而最大程度地减少了施泰纳$ k $ - wener索引。对于给定数量的细分市场的树木也考虑了相同的极端问题。
The Steiner distance of vertices in a set $S$ is the minimum size of a connected subgraph that contain these vertices. The sum of the Steiner distances over all sets $S$ of cardinality $k$ is called the Steiner $k$-Wiener index and studied as the natural generalization of the famous Wiener index in chemical graph theory. In this paper we study the extremal structures, among trees with a given segment sequence, that maximize or minimize the Steiner $k$-Wiener index. The same extremal problems are also considered for trees with a given number of segments.