论文标题

大流行建模和重新归一化组方程:接触矩阵,固定点和非特异性疫苗的影响

Pandemic modeling and the renormalization group equations: Effect of contact matrices, fixed points and nonspecific vaccine waning

论文作者

McGuigan, Michael

论文摘要

在本文中,我们发现用于大流行或流行病建模的方程与高能物理中使用的重新归一化组方程之间的共同特征。其中一些功能包括在大流行建模中的接触矩阵与重新归一化组方程中的操作员混合的关系。另一个常见的特征是使用流程图以及在重新归一化组方程下的大流行建模和进化中的固定点的研究。我们通过研究当前共同19-19大流行的某些感兴趣案例来说明这些关系。这些包括大流行建模与不同年龄段之间的混合以及与国家之间的接触相关的接触矩阵。在最后一个例子中,我们研究了旨在抵抗不同病原体的非特异性疫苗死亡率的影响,但仍可以减少COVID-19的严重性和死亡率。

In this paper we find common features between the equations that are used for pandemic or epidemic modeling and the renormalization group equations that are used in high energy physics. Some of these features include the relation of contact matrices in pandemic modeling and operator mixing in the renormalization group equations. Another common feature are the use of flow diagrams and the study of fixed points both in pandemic modeling and in evolution under renormalization group equations. We illustrate these relations through the study of some cases of interest to the current COVID-19 pandemic. These include pandemic modeling with mixing between different age groups and also contact matrices associated with contact between countries. For the final example we study the effect on mortality of waning from nonspecific vaccines which are designed to combat different pathogens but nevertheless may lessen the severity and mortality of COVID-19 infections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源