论文标题

关于$ \ mathbb r $ - 线性映射的几何特征

On geometrical characterizations of $\mathbb R$-linear mappings

论文作者

Fuchino, Sakaé

论文摘要

我们考虑了$ \ Mathbb R $ - 线性映射的几种特征。特别是,我们给出了线性映射的特征,其范围为$ \ geq $ 2维度,就映射保存(以及线路的收缩到点的收缩)而言。这种特征及其仿射版本概括了仿射几何学的基本定理。尽管$ \ Mathbb r $ - 线性映射作为加法函数的代数表征取决于集合理论的公理,但我们的结果在没有选择的无公理的Zermelo的Axiom系统(现代版本)中得到证明。

We consider several characterizations of $\mathbb R$-linear mappings. In particular, we give a characterization of linear mappings whose range is $\geq$ 2 dimensional, in terms of preservation of lines (and contraction of lines to a point) by the mappings. This characterization and its affine version generalize the Fundamental Theorem of Affine Geometry. While the algebraic characterization of $\mathbb R$-linear mappings as additive functions depend on the axiom of set theory, our results are provable in (the modern version of) Zermelo's axiom system without Axiom of Choice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源