论文标题

共同领域理论中的离散性和完整性

Discreteness and Integrality in Conformal Field Theory

论文作者

Kaidi, Justin, Perlmutter, Eric

论文摘要

紧凑型CFT中的各种可观察物需要遵守积极性,离散性和完整性。阳性构成了保形引导程序的症结,但是缺乏对离散性和正文对CFT空间的抽象含义的理解。我们使用两个主要的数学结果,系统地研究了这些约束。首先,我们证明了一个定理,可以约束积分,矢量值模块化函数附近的行为。其次,我们明确构建了可满足离散性和完整性的不可分割的非晶状体尖锐函数,一旦添加了阳性,就证明了这种功能的不存在。这些结果的应用在理性和非理性CFT的OPE数据上产生了几个bootstrap型界限,其中包括具有保形流形的理论的一些强大界限,以及对光谱确定性问题的见解。我们证明,在有理CFT中,操作员的频谱twist $ t \ geq {c \ over 12} $由其补充唯一决定。同样,我们认为在通用的CFT中,操作员尺寸的频谱$δ> {c-1 \ over 12} $的范围是由其补充的唯一决定,从某种意义上说,我们表达的意义上没有微调。最后,我们讨论了对黑洞物理学的影响,以及(非)唯一性,对ADS $ _3 $ GRAVITY的合奏解释。

Various observables in compact CFTs are required to obey positivity, discreteness, and integrality. Positivity forms the crux of the conformal bootstrap, but understanding of the abstract implications of discreteness and integrality for the space of CFTs is lacking. We systematically study these constraints in two-dimensional, non-holomorphic CFTs, making use of two main mathematical results. First, we prove a theorem constraining the behavior near the cusp of integral, vector-valued modular functions. Second, we explicitly construct non-factorizable, non-holomorphic cuspidal functions satisfying discreteness and integrality, and prove the non-existence of such functions once positivity is added. Application of these results yields several bootstrap-type bounds on OPE data of both rational and irrational CFTs, including some powerful bounds for theories with conformal manifolds, as well as insights into questions of spectral determinacy. We prove that in rational CFT, the spectrum of operator twists $t\geq {c \over 12}$ is uniquely determined by its complement. Likewise, we argue that in generic CFTs, the spectrum of operator dimensions $Δ> {c-1\over 12}$ is uniquely determined by its complement, absent fine-tuning in a sense we articulate. Finally, we discuss implications for black hole physics and the (non-)uniqueness of a possible ensemble interpretation of AdS$_3$ gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源