论文标题
使用轻窗帘进行自动驾驶的主动感知
Active Perception using Light Curtains for Autonomous Driving
论文作者
论文摘要
大多数真实的3D传感器(例如LiDars)对整个环境进行固定扫描,同时与处理传感器数据的识别系统分离。在这项工作中,我们提出了一种使用灯窗帘的方法来识别3D对象识别的方法,这是一种可控制的可控传感器,可在环境中测量用户指定位置的深度。至关重要的是,我们建议使用基于深度学习的3D点云检测器的预测不确定性来指导主动感知。考虑到神经网络的不确定性,我们得出了一个优化目标,可以使用最大化信息增益的原理放置光幕。然后,我们开发了一种新颖有效的优化算法,以通过将设备的物理约束编码为约束图,并通过动态编程进行优化,从而最大化该目标。我们展示了如何通过依次放置不确定性引导的轻窗帘来依次提高检测准确性来培训3D检测器在场景中检测物体。代码和详细信息可以在项目网页上找到:http://siddancha.github.io/projects/active-ceptivion-light-curtains。
Most real-world 3D sensors such as LiDARs perform fixed scans of the entire environment, while being decoupled from the recognition system that processes the sensor data. In this work, we propose a method for 3D object recognition using light curtains, a resource-efficient controllable sensor that measures depth at user-specified locations in the environment. Crucially, we propose using prediction uncertainty of a deep learning based 3D point cloud detector to guide active perception. Given a neural network's uncertainty, we derive an optimization objective to place light curtains using the principle of maximizing information gain. Then, we develop a novel and efficient optimization algorithm to maximize this objective by encoding the physical constraints of the device into a constraint graph and optimizing with dynamic programming. We show how a 3D detector can be trained to detect objects in a scene by sequentially placing uncertainty-guided light curtains to successively improve detection accuracy. Code and details can be found on the project webpage: http://siddancha.github.io/projects/active-perception-light-curtains.