论文标题
吉布斯与人抽样
Gibbs Sampling with People
论文作者
论文摘要
认知科学和机器学习中的一个核心问题是了解人类如何从感知对象中获得语义表示,例如苹果的颜色,音乐和弦的愉悦感或脸上的认真性。马尔可夫链蒙特卡洛(Monte Carlo)与人(MCMCP)是研究此类表示的重要方法,其中向参与者提供了构建的二进制选择试验,使决策遵循马尔可夫链蒙特卡洛接受规则。但是,尽管MCMCP具有强大的渐近性能,但其二进制选择范式每次试验的信息都相对较少,并且其本地提案功能使探索参数空间并找到分布的模式较慢。因此,在这里,我们将MCMCP推广到连续采样范式,在每个迭代中,参与者都使用滑块连续操纵单个刺激维度来优化给定标准,例如“愉悦性”。我们从公用事业理论的角度提出了这两种方法,并表明新方法可以解释为“与人一起抽样”(GSP)。此外,我们将聚合参数引入过渡步骤,并证明可以操纵此参数以在Gibbs采样和确定性优化之间灵活地移动。在一项最初的研究中,我们显示GSP的表现明显优于MCMCP。然后,我们证明GSP在其他三个领域,即音乐和弦,声音情感和面孔中提供了新颖且可解释的结果。我们通过大规模的感知评级实验来验证这些结果。最终实验使用GSP来浏览最先进的图像合成网络(StyleGAN)的潜在空间,这是将GSP应用于高维感知空间的有前途的方法。我们通过讨论未来的认知应用和道德意义来结束。
A core problem in cognitive science and machine learning is to understand how humans derive semantic representations from perceptual objects, such as color from an apple, pleasantness from a musical chord, or seriousness from a face. Markov Chain Monte Carlo with People (MCMCP) is a prominent method for studying such representations, in which participants are presented with binary choice trials constructed such that the decisions follow a Markov Chain Monte Carlo acceptance rule. However, while MCMCP has strong asymptotic properties, its binary choice paradigm generates relatively little information per trial, and its local proposal function makes it slow to explore the parameter space and find the modes of the distribution. Here we therefore generalize MCMCP to a continuous-sampling paradigm, where in each iteration the participant uses a slider to continuously manipulate a single stimulus dimension to optimize a given criterion such as 'pleasantness'. We formulate both methods from a utility-theory perspective, and show that the new method can be interpreted as 'Gibbs Sampling with People' (GSP). Further, we introduce an aggregation parameter to the transition step, and show that this parameter can be manipulated to flexibly shift between Gibbs sampling and deterministic optimization. In an initial study, we show GSP clearly outperforming MCMCP; we then show that GSP provides novel and interpretable results in three other domains, namely musical chords, vocal emotions, and faces. We validate these results through large-scale perceptual rating experiments. The final experiments use GSP to navigate the latent space of a state-of-the-art image synthesis network (StyleGAN), a promising approach for applying GSP to high-dimensional perceptual spaces. We conclude by discussing future cognitive applications and ethical implications.