论文标题

使用时间序列数据扩展提高全局预测模型的准确性

Improving the Accuracy of Global Forecasting Models using Time Series Data Augmentation

论文作者

Bandara, Kasun, Hewamalage, Hansika, Liu, Yuan-Hao, Kang, Yanfei, Bergmeir, Christoph

论文摘要

在许多时间序列(称为全球预测模型(GFM))中接受培训的预测模型最近显示了预测竞争和现实应用程序的有希望的结果,表现优于许多先进的单变量预测技术。在大多数情况下,使用深神网络,尤其是经常性神经网络(RNN)实施GFM,这些神经网络需要足够的时间序列来估算其众多模型参数。但是,许多时间序列数据库的时间序列数量有限。在这项研究中,我们提出了一种基于预测框架的新颖的数据增强框架,该框架能够在较少的数据丰富的设置中提高GFM模型的基线准确性。我们使用三个时间序列的增强技术:免费,移动块引导程序(MBB)和动态的时间扭曲barycentric平均(DBA)来合成生成时间序列的集合。然后,使用两种不同的方法将从这些增强时间序列中获取的知识转移到原始数据集中:汇总方法和转移学习方法。在构建GFMS时,在汇总方法中,我们将在增强时间序列上与原始时间序列数据集一起训练一个模型,而在转移学习方法中,我们将预先培训的模型调整为新数据集。在我们对竞争和实际时间序列数据集的评估中,我们提出的变体可以显着提高GFM模型的基线准确性,并胜过最先进的单变量预测方法。

Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown recently promising results in forecasting competitions and real-world applications, outperforming many state-of-the-art univariate forecasting techniques. In most cases, GFMs are implemented using deep neural networks, and in particular Recurrent Neural Networks (RNN), which require a sufficient amount of time series to estimate their numerous model parameters. However, many time series databases have only a limited number of time series. In this study, we propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of the GFM models in less data-abundant settings. We use three time series augmentation techniques: GRATIS, moving block bootstrap (MBB), and dynamic time warping barycentric averaging (DBA) to synthetically generate a collection of time series. The knowledge acquired from these augmented time series is then transferred to the original dataset using two different approaches: the pooled approach and the transfer learning approach. When building GFMs, in the pooled approach, we train a model on the augmented time series alongside the original time series dataset, whereas in the transfer learning approach, we adapt a pre-trained model to the new dataset. In our evaluation on competition and real-world time series datasets, our proposed variants can significantly improve the baseline accuracy of GFM models and outperform state-of-the-art univariate forecasting methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源