论文标题

从雨水到去雨

From Rain Generation to Rain Removal

论文作者

Wang, Hong, Yue, Zongsheng, Xie, Qi, Zhao, Qian, Zheng, Yefeng, Meng, Deyu

论文摘要

对于单图像降雨(SIRR)任务,基于深度学习(DL)的方法的性能主要受设计的模型和训练数据集的影响。当前的大多数最新目的都专注于构建强大的深层模型以获得更好的结果。在本文中,为了进一步提高降低性能,我们通过探索一种更有效的综合雨水图像的方法来从培训数据集的角度来处理SIRR任务。具体而言,我们为雨水图像构建了一个完整的贝叶斯生成模型,其中雨层被参数为发电机,其中某些潜在变量代表了物理结构降雨因子,例如方向,比例和厚度。为了解决该模型,我们采用变异推理框架以数据驱动的方式近似雨水图像的预期统计分布。借助学习的生成器,我们可以自动,充分地生成多样化和非重复的训练对,从而有效地丰富和增强现有的基准数据集。用户研究定性和定量评估产生的雨图的现实主义。全面的实验证明了所提出的模型可以忠实地提取复杂的降雨分布,不仅有助于显着改善当前深层单个图像降低器的降低性能,而且很大程度上会释放对SIRR任务进行大型训练样品预采用的要求。

For the single image rain removal (SIRR) task, the performance of deep learning (DL)-based methods is mainly affected by the designed deraining models and training datasets. Most of current state-of-the-art focus on constructing powerful deep models to obtain better deraining results. In this paper, to further improve the deraining performance, we novelly attempt to handle the SIRR task from the perspective of training datasets by exploring a more efficient way to synthesize rainy images. Specifically, we build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator with the input as some latent variables representing the physical structural rain factors, e.g., direction, scale, and thickness. To solve this model, we employ the variational inference framework to approximate the expected statistical distribution of rainy image in a data-driven manner. With the learned generator, we can automatically and sufficiently generate diverse and non-repetitive training pairs so as to efficiently enrich and augment the existing benchmark datasets. User study qualitatively and quantitatively evaluates the realism of generated rainy images. Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution that not only helps significantly improve the deraining performance of current deep single image derainers, but also largely loosens the requirement of large training sample pre-collection for the SIRR task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源