论文标题
在红移$ z \ gtrsim 4 $的情况下,通过调查区分银河发展模型的前景
Prospects for distinguishing galaxy evolution models with surveys at redshifts $z \gtrsim 4$
论文作者
论文摘要
最近出现了许多半经验的银河形成模型来解释高$ z $ Galaxy的光度功能,并为未来的星系调查做出预测。一种常见的方法假定“通用”星形形成效率,$ f _ {\ ast} $,独立于宇宙时间,但强烈依赖于暗物质晕圈的质量。尽管这类模型在匹配宇宙历史上的观察结果方面非常成功,但简单的恒星反馈模型确实可以预测$ f _ {\ ast} $中的红移演变,并且通常在半分析模型中使用。在这项工作中,我们校准了一组通用的$ f _ {\ ast} $,并将反馈调节的模型和相同的REST-ultraviolet $ z \ gtrsim 4 $观察值校准,并发现快速的,$ \ sim(1+z)^{-3/2} $在尘埃生产效率中均需降低了尘埃循环的效率,以进行尘埃循环 - 降低了当前的粉尘循环。通过构造,这些模型几乎与REST-ULTRAVIORET光度函数和颜色中的通用$ f _ {\ ast} $模型相同。结果,区分这些竞争场景的唯一方法是通过(i)改进星系聚类的约束 - 通用和反馈调节的模型在星系偏见的预测上,$ 0.1 \lyssimΔ\ langleΔ\ langle b \ langle b \ langle b \ rangle \ langle \ lisesim 0.3 $ 4 \ sime ysim sims II II II II II II II II II II(或)10 $ 10 $ 10 $ - (或)(或者)10 $ 10 $ 10 $(或)和/或恒星形成的占空比。这表明,高$ z $星系对“灰尘”和“爆发”的限制不仅会使给定的高$ z $星系中给定的恒星形成模型更加清晰,而且从根本上决定了我们首先确定正确模型的能力。
Many semi-empirical galaxy formation models have recently emerged to interpret high-$z$ galaxy luminosity functions and make predictions for future galaxy surveys. A common approach assumes a "universal" star formation efficiency, $f_{\ast}$, independent of cosmic time but strongly dependent on the masses of dark matter halos. Though this class of models has been very successful in matching observations over much of cosmic history, simple stellar feedback models do predict redshift evolution in $f_{\ast}$, and are commonly used in semi-analytic models. In this work, we calibrate a set of universal $f_{\ast}$ and feedback-regulated models to the same set of rest-ultraviolet $z \gtrsim 4$ observations, and find that a rapid, $\sim (1+z)^{-3/2}$ decline in both the efficiency of dust production and duty cycle of star formation are needed to reconcile feedback-regulated models with current observations. By construction, these models remain nearly identical to universal $f_{\ast}$ models in rest-ultraviolet luminosity functions and colours. As a result, the only way to distinguish these competing scenarios is either via (i) improved constraints on the clustering of galaxies -- universal and feedback-regulated models differ in predictions for the galaxy bias by $0.1 \lesssim Δ\langle b \rangle \lesssim 0.3$ over $4 \lesssim z \lesssim 10$ -- or (ii) independent constraints on the dust contents and/or duty cycle of star formation. This suggests that improved constraints on the `dustiness' and `burstiness' of high-$z$ galaxies will not merely add clarity to a given model of star formation in high-$z$ galaxies, but rather fundamentally determine our ability to identify the correct model in the first place.