论文标题
通过基于整体的数据同化气泡塌陷观测来表征粘弹性材料
Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations
论文作者
论文摘要
需要高应变速率的粘弹性材料特性来对许多生物学和医疗系统进行建模。气泡空化可以诱导这种应变速率,并且所得的气泡动力学对材料特性敏感。因此,原则上,可以通过测量气泡动力学来推断这些特性。 Estrada等。 (2018年)通过使用最小二乘射击来最大程度地减少模拟和实验气泡半径历史之间的差异,证明了这种气泡动力的高压率流变率。我们概括了他们的技术,以说明模型,初始条件和材料特性中所需的其他不确定性,以唯一模拟气泡动态。基于整体的数据同化最小化与气泡空化模型相关的计算费用。我们在合成数据上测试了一个合奏Kalman滤波器(ENKF),一个迭代的集合卡尔曼平滑(iENK)和基于混合的4D-var方法(EN4D--VAR),评估了它们对Kelvin-voigt材料的粘度和剪切模量的估计。结果表明,EN4D-VAR和IENK提供的模量估计比ENKF更好。将这些方法应用于Estrada等人的实验数据。 (2018年)产生的材料财产估计与所获得的材料估计相似,但提供了有关不确定性的其他信息。特别是,EN4D-VAR在某些实验中产生较低的粘度估计值,动态估计器揭示了该模型中未划分的潜在机制,因此由于气泡崩溃时物质损害,在某些情况下,粘度会降低。
Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D--Var method (En4D--Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin--Voigt material. Results show that En4D--Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D--Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the viscosity is reduced in some cases due to material damage occurring at bubble collapse.