论文标题

在电路量子电动力学阈值下运行的重计

Bolometer operating at the threshold for circuit quantum electrodynamics

论文作者

Kokkoniemi, R., Girard, J. -P., Hazra, D., Laitinen, A., Govenius, J., Lake, R. E., Sallinen, I., Vesterinen, V., Hakonen, P., Möttönen, M.

论文摘要

基于吸收辐射的加热效果的辐射传感器通常相对简单地操作,并且在输入频率方面具有灵活性。因此,它们被广泛应用于气体检测,安全性,THZ成像,天体物理观察和医疗应用中。目前,量子技术,尤其是从机械量子的电路中出现了一系列重要应用的新范围。该电路量子电动力学(CQED)引起了前所未有的单光子探测器,并且在某个任务中超出了经典超级计算机的量子计算机最高。热传感器在增强这些设备方面具有吸引力,因为它们不受量子噪声的困扰,并且比常用的旅行波参数放大器较小,更简单且消耗六个数量级的功率。然而,尽管热传感器的速度和噪声水平取得了长足的进步,但迄今为止,迄今为止,尚无重音计的快速和敏感性,足以在CQED中提供优势。在这里,我们在实验上证明了一个验证仪,其噪声当量功率为$ 30 \,\ rm {zw}/\ sqrt {\ rm {hz}} $,同时提供了当前记录,同时提供了较短的热时间常数为500 ns的两个级别。重要的是,这两个特征数都是直接从同一设备中测量的,这意味着对单个30-GHz光子的量热能分辨率的忠实估计。这些改进源于将石墨烯单层作为具有极低比热的活性材料的利用。最低表现为200 ns的时间常数大大低于最先进的驱动时间,大约是100μs的超导量子,并符合当代读取方案的时间表,从而实现了CQED中热检测器的利用。

Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are widely applied, for example, in gas detection, security, THz imaging, astrophysical observations, and medical applications. A new spectrum of important applications is currently emerging from quantum technology and especially from electrical circuits behaving quantum mechanically. This circuit quantum electrodynamics (cQED) has given rise to unprecedented single-photon detectors and a quantum computer supreme to the classical supercomputers in a certain task. Thermal sensors are appealing in enhancing these devices since they are not plagued by quantum noise and are smaller, simpler, and consume about six orders of magnitude less power than the commonly used traveling-wave parametric amplifiers. However, despite great progress in the speed and noise levels of thermal sensors, no bolometer to date has proven fast and sensitive enough to provide advantages in cQED. Here, we experimentally demonstrate a bolometer surpassing this threshold with a noise equivalent power of $30\, \rm{zW}/\sqrt{\rm{Hz}}$ on par with the current record while providing two-orders of magnitude shorter thermal time constant of 500 ns. Importantly, both of these characteristic numbers have been measured directly from the same device, which implies a faithful estimation of the calorimetric energy resolution of a single 30-GHz photon. These improvements stem from the utilization of a graphene monolayer as the active material with extremely low specific heat. The minimum demonstrated time constant of 200 ns falls greatly below the state-of-the-art dephasing times of roughly 100 μs for superconducting qubits and meets the timescales of contemporary readout schemes thus enabling the utilization of thermal detectors in cQED.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源