论文标题

使用并发学习扩展完整和减少的订单观察者,以进行基于图像的深度估算

Extension of Full and Reduced Order Observers for Image-based Depth Estimation using Concurrent Learning

论文作者

Rotithor, Ghananeel, Trombetta, Daniel, Kamalapurkar, Rushikesh, Dani, Ashwin

论文摘要

在本文中,开发了共同学习(CL)基于透视动力系统(PDS)的完整和减少订单观察者。 PDS是一种广泛使用的模型,用于估算一系列相机图像的特征点的深度。基于自适应控制中参数估计的当前CL进展的基础,为PDS模型开发了状态观察者,其中反向深度在动力学中以时变参数的形式出现。在CL期限中使用了在近乎过去的滑动时间窗口上记录的数据,以设计完整的和减少的订单状态观察者。进行了基于lyapunov的稳定性分析,以证明发达的观察者最终有限的(UUB)稳定性。给出了仿真结果,以验证开发观察者在收敛时间,均方根误差(RMSE)和平均绝对百分比误差(MAPE)指标方面的准确性和收敛性。进行现实世界的深度估计实验,以在具有眼睛配置的7-DOF操纵器上使用上述指标来证明观察者的性能。

In this paper concurrent learning (CL)-based full and reduced order observers for a perspective dynamical system (PDS) are developed. The PDS is a widely used model for estimating the depth of a feature point from a sequence of camera images. Building on the current progress of CL for parameter estimation in adaptive control, a state observer is developed for the PDS model where the inverse depth appears as a time-varying parameter in the dynamics. The data recorded over a sliding time window in the near past is used in the CL term to design the full and the reduced order state observers. A Lyapunov-based stability analysis is carried out to prove the uniformly ultimately bounded (UUB) stability of the developed observers. Simulation results are presented to validate the accuracy and convergence of the developed observers in terms of convergence time, root mean square error (RMSE) and mean absolute percentage error (MAPE) metrics. Real world depth estimation experiments are performed to demonstrate the performance of the observers using aforementioned metrics on a 7-DoF manipulator with an eye-in-hand configuration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源