论文标题

Brans-Dicke理论中Bondi-Metzner-Sachs代数的“保守指控”

"Conserved charges" of the Bondi-Metzner-Sachs algebra in the Brans-Dicke theory

论文作者

Hou, Shaoqi, Zhu, Zong-Hong

论文摘要

使用Penrose的共形完成方法分析了Brans-Dicke理论中的渐近对称性,该方法与所使用的坐标系无关。这些对称性确实包括渐近平稳时期的超级翻译和洛伦兹的变换。使用Wald-zoupas形式主义,计算了邦迪 - 米茨纳 - 萨克斯代数的“保守电荷”和通量。标量自由度仅在洛伦兹(Lorentz)的促进电荷中贡献,尽管它在各种通量中起着作用。磁通平衡定律进一步用于限制位移记忆,旋转内存和质量内存效应。

The asymptotic symmetries in Brans-Dicke theory are analyzed using Penrose's conformal completion method, which is independent of the coordinate system used. These symmetries indeed include supertranslations and Lorentz transformations for an asymptotically flat spacetime. With the Wald-Zoupas formalism, "conserved charges" and fluxes of the Bondi-Metzner-Sachs algebra are computed. The scalar degree of freedom contributes only to the Lorentz boost charge, although it plays a role in various fluxes. The flux-balance laws are further used to constrain displacement memory, spin memory and center-of-mass memory effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源