论文标题

通过实时分布式推断,在移动边缘云中通过实时分布式推断,身份感知的属性识别

Identity-Aware Attribute Recognition via Real-Time Distributed Inference in Mobile Edge Clouds

论文作者

Xu, Zichuan, Wu, Jiangkai, Xia, Qiufen, Zhou, Pan, Ren, Jiankang, Liang, Huizhi

论文摘要

随着深度学习技术的发展,属性识别和人员重新识别(RE-ID)通过执行云数据中心中的计算密集的深神经网络引起了广泛的关注,并取得了持续的改进。但是,由于回程网络的延迟以及从摄像机到数据中心的大量数据传输,数据中心部署无法满足属性识别和人员重新ID的实时需求。因此,可行的解决方案是在摄像机的接近度中使用移动边缘云(MEC)并启用分布式推理。在本文中,我们在支持MEC的相机监视系统中使用RE-ID设计了用于行人属性识别的新颖模型。我们还研究了支持MEC的相机网络中分布式推断的问题。为此,我们首先通过共同考虑属性识别和人重新ID提出了一个带有一组分布式模块的新颖推论框架。然后,我们设计了一种基于学习的算法,以考虑提出的分布式推理框架的模块的分布,考虑到具有不确定性的动态MEC相机网络。我们最终通过使用真实数据集和系统实现的模拟来评估所提出的算法的性能。评估结果表明,通过达到属性识别和人识别的准确性,提出的具有分布式推理框架的算法的性能分别为92.9%和96.6%,并且与现有方法相比,推理延迟至少将推断延迟显着减少至少40.6%。

With the development of deep learning technologies, attribute recognition and person re-identification (re-ID) have attracted extensive attention and achieved continuous improvement via executing computing-intensive deep neural networks in cloud datacenters. However, the datacenter deployment cannot meet the real-time requirement of attribute recognition and person re-ID, due to the prohibitive delay of backhaul networks and large data transmissions from cameras to datacenters. A feasible solution thus is to employ mobile edge clouds (MEC) within the proximity of cameras and enable distributed inference. In this paper, we design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system. We also investigate the problem of distributed inference in the MEC-enabled camera network. To this end, we first propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID. We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework, considering the dynamic MEC-enabled camera network with uncertainties. We finally evaluate the performance of the proposed algorithm by both simulations with real datasets and system implementation in a real testbed. Evaluation results show that the performance of the proposed algorithm with distributed inference framework is promising, by reaching the accuracies of attribute recognition and person identification up to 92.9% and 96.6% respectively, and significantly reducing the inference delay by at least 40.6% compared with existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源