论文标题

几乎完整图中的分数三角分解

Fractional triangle decompositions in almost complete graphs

论文作者

Gruslys, Vytautas, Letzter, Shoham

论文摘要

我们证明,每个$ n $ vertex图具有至少$ \ binom {n} {2} - (n -4)$ edges具有分数三角分解,以$ n \ ge 7 $。这是我们证明的关键要素,在同伴论文中给出,每$ n $ vertex $ 2 $颜色的完整图包含$ n^2/12 + o(n^2)$ edge-disshewient syhotic triangals,这证实了Erdős的猜想。

We prove that every $n$-vertex graph with at least $\binom{n}{2} - (n - 4)$ edges has a fractional triangle decomposition, for $n \ge 7$. This is a key ingredient in our proof, given in a companion paper, that every $n$-vertex $2$-coloured complete graph contains $n^2/12 + o(n^2)$ edge-disjoint monochromatic triangles, which confirms a conjecture of Erdős.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源