论文标题

源自多项式花纹的定向小波包数据包

Directional wavelet packets originating from polynomial splines

论文作者

Averbuch, Amir, Neittaanmaki, Pekka, Zheludev, Valery

论文摘要

该论文介绍了准分析复合物值小波包(WPS)的多功能库,该库源自任意阶的多项式花纹。准分析WPS的实际部分是[1]中设计的基于常规的基于样条的正顺序WPS。假想的部分是从常规WPS的Hilbert变换中得出的所谓互补正顺序WP,与对称的常规WPS不同,是反对称的。 1D准分析WPS的张量产品可在多个方向上提供2D WPS的多样性。例如,一组第四级WPS包含62个不同的方向。所呈现的WPS的性质是精制的频率分辨率,无限数量的波形的方向性,波形的(反)对称性以及具有多种频率的波形的窗口振荡结构。定向WP具有强大的潜力,可以在各种图像处理应用中使用,例如恢复降解的图像以及从图像中提取特征特征。

The paper presents a versatile library of quasi-analytic complex-valued wavelet packets (WPs) which originate from polynomial splines of arbitrary orders. The real parts of the quasi-analytic WPs are the regular spline-based orthonormal WPs designed in [1]. The imaginary parts are the so-called complementary orthonormal WPs that are derived from the Hilbert transforms of the regular WPs and, unlike the symmetric regular WPs, are antisymmetric. Tensor products of 1D quasi-analytic WPs provide a diversity of 2D WPs oriented in multiple directions. For example, a set of the fourth-level WPs comprises 62 different directions. The properties of the presented WPs are refined frequency resolution, directionality of waveforms with unlimited number of orientations, (anti-)symmetry of waveforms and windowed oscillating structure of waveforms with a variety of frequencies. Directional WPs have a strong potential to be used in various image processing applications such as restoration of degraded images and extraction of characteristic features from the images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源