论文标题

在有限字母等级的最小S-ADIC子迁移的自动形态群体中

On the automorphism group of minimal S-adic subshifts of finite alphabet rank

论文作者

Espinoza, Bastián, Maass, Alejandro

论文摘要

最近已经证明,具有非典型单词复杂性的最小次换档的自动形态组实际上是$ \ mathbb {z} $ [ddpm15,ck15]。在本文中,我们将此结果扩展到更广泛的类别,证明了有限字母等级的最小S-ADIC子迁移的自动形态组实际上是$ \ mathbb {z} $。该证明是基于对这种类型的缩影中渐近类的精细组合分析,我们证明这是有限的数字。

It has been recently proved that the automorphism group of a minimal subshift with non-superlinear word complexity is virtually $\mathbb{Z}$ [DDPM15, CK15]. In this article we extend this result to a broader class proving that the automorphism group of a minimal S-adic subshift of finite alphabet rank is virtually $\mathbb{Z}$. The proof is based on a fine combinatorial analysis of the asymptotic classes in this type of subshifts, which we prove are a finite number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源