论文标题
协变相空间
Covariantizing Phase Space
论文作者
论文摘要
我们对相位空间的流动性进行协变量计算,建立了Stokes的差分横截面定理,并提供了熟悉的可观察特性(如红外和共线性安全)的新定义。通过引入显式坐标和度量标准,我们表明相位空间与单纯形和超晶的产物空间是同构的,我们确定了当其尺寸较大时发生的几何现象。这些结果对固定顺序减法方案,粒子物理学中的机器学习和高型重离子碰撞具有影响。
We covariantize calculations over the manifold of phase space, establishing Stokes' theorem for differential cross sections and providing new definitions of familiar observable properties like infrared and collinear safety. Through the introduction of explicit coordinates and a metric we show phase space is isomorphic to the product space of a simplex and a hypersphere, and we identify geometric phenomena that occur when its dimensions are large. These results have implications for fixed order subtraction schemes, machine learning in particle physics and high-multiplicity heavy ion collisions.