论文标题

在没有$ \ Mathcal {pt} $对称性的情况下,骨髓系统中的旋转时间对称性和存在特殊点

Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of $\mathcal{PT}$ symmetry

论文作者

Lange, Ewelina, Chimczak, Grzegorz, Kowalewska-Kudłaszyk, Anna, Bartkiewicz, Karol

论文摘要

我们研究在存在激光泵送的情况下开放的骨髓系统的对称性。描述这些系统的非热汉密尔顿人可以是平等时间($ {\ cal {pt}} $)在特殊情况下对称。表现出这种对称性的系统的特征是实现的能量光谱,并且可以显示出特殊的点,其中发生对称性的过渡。我们证明存在更通用的对称性类型,即旋转时间($ {\ cal {rt}} $)对称性。我们观察到$ {\ cal {rt}} $ - 对称的非汉密尔顿汉密尔顿人表现出实用值的能量谱,可以通过对称性破坏使人单数。为了计算所研究的纤维音不可用的汉密尔顿人的光谱,我们采用基于玻感代数的对角线化方法。最后,我们列出了一个多功能设置规则,允许立即识别或构造$ {\ cal {rt}} $ - 对称的汉密尔顿人。我们认为,我们在$ {\ cal {rt}} $上的结果 - 对称的骨系统及其光谱奇点可以导致受$ {\ cal {pt}} $ - 对称系统的启发的新应用。

We study symmetries of open bosonic systems in the presence of laser pumping. Non-Hermitian Hamiltonians describing these systems can be parity-time (${\cal{PT}}$) symmetric in special cases only. Systems exhibiting this symmetry are characterised by real-valued energy spectra and can display exceptional points, where a symmetry-breaking transition occurs. We demonstrate that there is a more general type of symmetry, i.e., rotation-time (${\cal{RT}}$) symmetry. We observe that ${\cal{RT}}$-symmetric non-Hermitian Hamiltonians exhibit real-valued energy spectra which can be made singular by symmetry breaking. To calculate the spectra of the studied bosonic non-diagonalisable Hamiltonians we apply diagonalisation methods based on bosonic algebra. Finally, we list a versatile set rules allowing to immediately identifying or constructing ${\cal{RT}}$-symmetric Hamiltonians. We believe that our results on the ${\cal{RT}}$-symmetric class of bosonic systems and their spectral singularities can lead to new applications inspired by those of the ${\cal{PT}}$-symmetric systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源