论文标题
Alcubierre Warp Drive Spacetime的灰尘内容解决方案
Dust content solutions for the Alcubierre warp drive spacetime
论文作者
论文摘要
Alcubierre度量是一种时空的几何形状,在该几何形状中,当称为Warp Bubble的时空失真内部的巨大粒子能够以任意高于光速的速度行驶,该速度是光的速度,该特征被称为Warp Drive。这是一般相对性的结果,它允许全球超亮速度,但根据特殊相对论要求将局部速度限制在跨流动速度上。在这项工作中,我们解决了Alcubierre Warp驱动时空几何形状的爱因斯坦方程,考虑到灰尘分布作为来源,因为Alcubierre度量标准并不是最初作为爱因斯坦方程的解决方案,而是作为Einstein方程的解决方案,而是作为空间的几何形状,而无需源值。我们发现,包含无压粉尘的几何形状的所有爱因斯坦方程解决方案都导致真空溶液。我们还得出结论,这些解决方案将Alcubierre指标连接到汉堡方程,该方程描述了通过无粘性流体移动的冲击波。我们的结果还表明,这些冲击波以平面波的形式行为。
The Alcubierre metric is a spacetime geometry where a massive particle inside a spacetime distortion, called warp bubble, is able to travel at velocities arbitrarily higher than the velocity of light, a feature known as the warp drive. This is a consequence of general relativity, which allows global superluminal velocities but restricts local speeds to subluminal ones as required by special relativity. In this work we solved the Einstein equations for the Alcubierre warp drive spacetime geometry considering the dust matter distribution as source, since the Alcubierre metric was not originally advanced as a solution of the Einstein equations, but as a spacetime geometry proposed without a source gravity field. We found out that all Einstein equations solutions of this geometry containing pressureless dust lead to vacuum solutions. We also concluded that these solutions connect the Alcubierre metric to the Burgers equation, which describes shock waves moving through an inviscid fluid. Our results also indicated that these shock waves behave as plane waves.