论文标题
可视意识到基于图像建议的跳过
Visually Aware Skip-Gram for Image Based Recommendations
论文作者
论文摘要
产品的视觉外观显着影响电子商务网站上的购买决策。我们建议使用产品图像功能在公共潜在空间中学习用户和产品表示的新型框架VASG(视觉上意识到的跳过)。我们的模型是Skip-gram体系结构和基于神经网络的深度解码器的合并。在这里,Skip-gram试图通过在异质信息网络中优化用户产品共发生来捕获用户偏好,而解码器同时学习了映射以将产品图像功能转换为Skip-gram嵌入空间。该体系结构以端到端的多任务方式共同优化。拟议的框架使我们能够为没有购买历史的冷启动产品提出个性化建议。在大型现实世界数据集上进行的实验表明,学习的嵌入可以使用最近的邻居搜索生成有效的建议。
The visual appearance of a product significantly influences purchase decisions on e-commerce websites. We propose a novel framework VASG (Visually Aware Skip-Gram) for learning user and product representations in a common latent space using product image features. Our model is an amalgamation of the Skip-Gram architecture and a deep neural network based Decoder. Here the Skip-Gram attempts to capture user preference by optimizing user-product co-occurrence in a Heterogeneous Information Network while the Decoder simultaneously learns a mapping to transform product image features to the Skip-Gram embedding space. This architecture is jointly optimized in an end-to-end, multitask fashion. The proposed framework enables us to make personalized recommendations for cold-start products which have no purchase history. Experiments conducted on large real-world datasets show that the learned embeddings can generate effective recommendations using nearest neighbour searches.