论文标题
Sklyanin代数的最大订单
Maximal Orders in the Sklyanin Algebra
论文作者
论文摘要
非交通性几何形状的主要目的是非共同投影表面的分类。通用案例是了解Sklyanin代数的代数。在这项工作中,我们完成了这个问题的相当大的组成部分。让S表示在代数封闭的磁场上表示3维Sklyanin代数,并假设S不是其中心上的有限模块。在较早的工作中,罗加尔斯基(Rogalski),塞拉(Sierra)和斯塔福德(Stafford)对S内的最大订单分类。我们完成并扩展了他们的工作,并对S. S. S. Rogalski,Sierra和Stafford的工作进行了分类,可以将这些视为(可能是非效率)分隔的爆炸。这种分类的结果是,最大订单在其他理想的特性中自动呈上位置。
A major current goal of noncommutative geometry is the classification of noncommutative projective surfaces. The generic case is to understand algebras birational to the Sklyanin algebra. In this work we complete a considerable component of this problem. Let S denote the 3-dimensional Sklyanin algebra over an algebraically closed field, and assume that S is not a finite module over its centre. In earlier work Rogalski, Sierra and Stafford classified the maximal orders inside the 3-Veronese of S. We complete and extend their work and classify all maximal orders inside S. As in Rogalski, Sierra and Stafford's work, these can be viewed as blowups at (possibly non-effective) divisors. A consequence of this classification is that maximal orders are automatically noetherian among other desirable properties.