论文标题
开放式Tetraquark $ x_c $和open bottom tetraquark $ x_b $
Open-charm tetraquark $X_c$ and open-bottom tetraquark $X_b$
论文作者
论文摘要
由LHCB观察到异国情调状态的动机$ x_ {0,1}(2900)$,在decay频道$ d^ - k^+ $中有四种开放夸克风味,在衰减通道中的质量分布$ b^\ pm \ to d^+ d^+ d^ - k^\ pm $,我们研究了spectrum and Decay properties open open Charm terra charm tetrra tetra terra terra terra terra terra terra terra terra terra terra terra terra terra terra terra terra terra terra。使用两体铬磁相互作用,我们发现两个新观察到的状态可以解释为具有$ j^p = 0^+$的径向激发四夸克和分别具有$ j^p = 1^ - $的轨道兴奋的四夸克。然后,我们探索由$ su \ bar d \ bar d \ bar c $和$ d s \ bar u \ bar c $制成的其他风味四夸克的质量和衰变,这些bar d \ bar u \ bar c $在$ \ bar 6 $或$ 15 $中的su(3)组中表示。我们指出这两个状态可以通过衰减找到:$ x^{(\ prime)} _ {d s \ bar {u} \ bar {c}}} \ to(d^ - k^ - ,d_s^ - π^ - )$,$ x^{(\ prime)} _ { \ bar {d} \ bar {c}} \ to d_s^-π^+ $。我们还将分析应用于打开底部Tetraquark $ x_b $并预测其群众。可以通过以下腐烂发现开放味的$ x_b $:$ x_ {ud \ bar s \ bar {b}} \ to b^0k^+$,$ x^{(\ prime)} _ {d s {d s \ bar {u} \ bar {b}}} \ to(b^0 k^ - ,b_s^0π^ - )$,$ x^{(\ prime)} _ {s U { \ bar {d} \ bar {b}} \ to b_s^0π^+ $。
Motivated by the LHCb observation of exotic states $X_{0,1}(2900)$ with four open quark flavors in the $D^- K^+$ invariant mass distribution in the decay channel $B^\pm \to D^+ D^- K^\pm$, we study the spectrum and decay properties of the open charm tetraquarks. Using the two-body chromomagnetic interactions, we find that the two newly observed states can be interpreted as a radial excited tetraquark with $J^P=0^+$ and an orbitally excited tetraquark with $J^P=1^-$, respectively. We then explore the mass and decays of the other flavor-open tetraquarks made of $su \bar d \bar c$ and $ d s \bar u \bar c$, which are in the $\bar 6$ or $15$ representation of the flavor SU(3) group. We point that these two states can be found through the decays: $X^{(\prime)}_{d s \bar{u}\bar{c}}\to (D^- K^-, D_s^- π^-) $, and $X^{(\prime)}_{s u \bar{d}\bar{c}}\to D_s^-π^+ $. We also apply our analysis to open bottom tetraquark $X_b$ and predict their masses. The open-flavored $X_b$ can be discovered through the following decays: $X_{ud\bar s\bar{b}}\to B^0K^+$, $X^{(\prime)}_{d s \bar{u}\bar{b}}\to (B^0 K^-, B_s^0 π^-) $, and $X^{(\prime)}_{s u \bar{d}\bar{b}}\to B_s^0π^+ $.