论文标题
具有贫瘠高原的量子神经网络的高阶衍生物
Higher Order Derivatives of Quantum Neural Networks with Barren Plateaus
论文作者
论文摘要
量子神经网络(QNN)为编程近期量子计算机提供了强大的范式,并有可能加快从数据科学到化学再到材料科学的应用程序。但是,意识到加速的可能障碍是贫瘠的高原(BP)现象,因此,对于某些QNN体系结构,梯度在系统尺寸$ n $中成倍消失。最近在文献中提出了高阶衍生信息(例如Hessian)是否可以帮助逃脱BP的问题。在这里,我们表明,Hessian的元素在BP中被指数抑制,因此在这种情况下估算Hessian将需要精确度,以指数缩放为$ n $。因此,基于Hessian的方法无法规避与BPS相关的指数缩放。我们还显示了对高阶衍生物的指数抑制。因此,BP会影响超出(一阶)梯度下降的优化策略。在得出我们的结果时,我们证明了新颖的通用公式,可用于分析量子硬件上的任何高阶部分导数。这些公式可能会引起培训量子神经网络(在BPS之外)的独立兴趣和使用。
Quantum neural networks (QNNs) offer a powerful paradigm for programming near-term quantum computers and have the potential to speedup applications ranging from data science to chemistry to materials science. However, a possible obstacle to realizing that speedup is the Barren Plateau (BP) phenomenon, whereby the gradient vanishes exponentially in the system size $n$ for certain QNN architectures. The question of whether high-order derivative information such as the Hessian could help escape a BP was recently posed in the literature. Here we show that the elements of the Hessian are exponentially suppressed in a BP, so estimating the Hessian in this situation would require a precision that scales exponentially with $n$. Hence, Hessian-based approaches do not circumvent the exponential scaling associated with BPs. We also show the exponential suppression of higher order derivatives. Hence, BPs will impact optimization strategies that go beyond (first-order) gradient descent. In deriving our results, we prove novel, general formulas that can be used to analytically evaluate any high-order partial derivative on quantum hardware. These formulas will likely have independent interest and use for training quantum neural networks (outside of the context of BPs).