论文标题
相互信息辅助自适应变分量子本质量
Mutual information-assisted Adaptive Variational Quantum Eigensolver
论文作者
论文摘要
Ansatz电路的自适应构造为近期量子硬件上适用的变性量子质体提供了有希望的途径。这些算法旨在为某个问题建立最佳电路,而Ansatz电路是通过从预定台池中选择和添加纠缠者来自适应构建的。在这项工作中,我们提出了一种通过利用经典算法来构建尺寸降低的缠绕池的方法。我们的方法在经典近似的基态中使用量子位之间的互信息来对纠缠和筛选纠缠。在这项工作中,使用密度矩阵重新归一化组方法用于经典的预成立。我们在小分子上以数值来证实我们的方法。我们的数值实验表明,与原始缠结池的一小部分相同的缠结池可以达到相同的数值准确性。我们认为,我们的方法铺平了一种新方法,用于自适应构造Ansatz电路,用于各种量子算法。
Adaptive construction of ansatz circuits offers a promising route towards applicable variational quantum eigensolvers on near-term quantum hardware. Those algorithms aim to build up optimal circuits for a certain problem and ansatz circuits are adaptively constructed by selecting and adding entanglers from a predefined pool. In this work, we propose a way to construct entangler pools with reduced size by leveraging classical algorithms. Our method uses mutual information between the qubits in classically approximated ground state to rank and screen the entanglers. The density matrix renormalization group method is employed for classical precomputation in this work. We corroborate our method numerically on small molecules. Our numerical experiments show that a reduced entangler pool with a small portion of the original entangler pool can achieve same numerical accuracy. We believe that our method paves a new way for adaptive construction of ansatz circuits for variational quantum algorithms.