论文标题
在严格的兼容性约束下负载平衡
Load Balancing Under Strict Compatibility Constraints
论文作者
论文摘要
我们研究在严格的任务服务器兼容性约束的情况下,在JSQ $(D)$策略下运行的大规模系统。考虑一个具有$ n $相同单词队列和$ m(n)$任务类型的系统,其中每个服务器只能处理可能的任务类型的一小部分。每个到达任务选择$ d \ geq 2 $随机服务器与其类型兼容,并加入其中最短的队列。兼容性约束自然是由服务器和任务类型之间的固定的双分图$ g_n $捕获的。当$ g_n $是完整的两部分时,曲折的近似被证明是准确的。但是,由于其压倒性的实施成本和服务器上的储存能力要求,这种密集的兼容图是不可行的。我们本文的目标是表征均匀近似值的稀疏兼容图。 为了实现这一目标,首先,我们引入了一种新型的基于图的膨胀概念,称为比例稀疏性,并确定具有按比例稀疏兼容图的系统与在大型系统限制下渐近系统的性能相匹配。此外,对于任何满足$$ \ frac {nc(n)} {m(n)\ ln(n)} \ to \ infty \ quad \ quad \ text \ text {and} \ quad c(and} c(quad c(n)\ quad c(n)\ to s $ n as sprable sprable sprable sprable sprable speptation,对于任何$ c(n)$满足的任何$ c(n)$每个服务器最多为$ c(n)$。与完整的两部分兼容图相比,这将服务器测度几乎减少了一个因子$ n/\ ln(n)$,同时保持相同的渐近性能。进行广泛的仿真实验以证实理论结果。
We study large-scale systems operating under the JSQ$(d)$ policy in the presence of stringent task-server compatibility constraints. Consider a system with $N$ identical single-server queues and $M(N)$ task types, where each server is able to process only a small subset of possible task types. Each arriving task selects $d\geq 2$ random servers compatible to its type, and joins the shortest queue among them. The compatibility constraint is naturally captured by a fixed bipartite graph $G_N$ between the servers and the task types. When $G_N$ is complete bipartite, the meanfield approximation is proven to be accurate. However, such dense compatibility graphs are infeasible due to their overwhelming implementation cost and prohibitive storage capacity requirement at the servers. Our goal in this paper is to characterize the class of sparse compatibility graphs for which the meanfield approximation remains valid. To achieve this, first, we introduce a novel graph expansion-based notion, called proportional sparsity, and establish that systems with proportionally sparse compatibility graphs match the performance of a fully flexible system, asymptotically in the large-system limit. Furthermore, for any $c(N)$ satisfying $$\frac{Nc(N)}{M(N)\ln(N)}\to \infty\quad \text{and}\quad c(N)\to \infty,$$ as $N\to\infty$, we show that proportionally sparse random compatibility graphs can be designed, so that the degree of each server is at most $c(N)$. This reduces the server-degree almost by a factor $N/\ln(N)$, compared to the complete bipartite compatibility graph, while maintaining the same asymptotic performance. Extensive simulation experiments are conducted to corroborate the theoretical results.