论文标题
简单恒星种群的全光谱拟合精确。 I.被清采样的人群
On the Precision of Full-spectrum Fitting of Simple Stellar Populations. I. Well-sampled Populations
论文作者
论文摘要
我们研究了通过全光谱拟合确定的21,000个模拟简单恒星种群(SSP)的年龄和金属性的精度。模拟SSP的年龄范围为6.8 $ <$ log(年龄/年)$ <$ 10.2,对于光学制度中的三个波长范围,使用Padova和Mist Isochrone型号。将随机噪声添加到模型光谱中,以达到每个波长像素10至100之间的S/N比。我们发现,对于S/n $ \ geq $ 50,该技术可以使SSP的年龄达到$δ\,\ mbox {log(age/yr)} \ sim 0.1 $ 7.0 $ \ leq $ log(age/yr)$ 8.3 $ 8.3 $ 8.9 $ yq $ yq yr y yr yr yq $ 8. yr yr yr y y y y y yr y y y y y y y y y y y y y y y y 7. $ 8. y y y y y $对于8.3 $ \ leq $ log(年龄)$ \ leq $ 8.9和log(年龄/Yr)$ \ geq $ 9.5的年龄范围,它们具有渐近巨型分支(AGB)和红色巨型分支(RGB)星星的大量贡献,分别是$ \ $ \ pm dex。使用此方法的年龄和金属性估计的精度显着取决于拟合中使用的S/N和波长范围。由于它们在恒星进化的各种重要(即发光)阶段中对恒星物理学的不同假设,我们量化了由雾和帕多瓦等速线模型预测的年龄的系统差异,在比较使用这些流行模型获得的恒星簇的年龄时,需要考虑考虑这些恒星进化的阶段。了解该技术的优势和局限性对于解释对真正的星团获得的结果以及在执行观测之前确定最佳仪器设置的结果至关重要。
We investigate the precision of the ages and metallicities of 21,000 mock simple stellar populations (SSPs) determined through full-spectrum fitting. The mock SSPs cover an age range of 6.8 $<$ log (age/yr) $<$ 10.2, for three wavelength ranges in the optical regime, using both Padova and MIST isochrone models. Random noise is added to the model spectra to achieve S/N ratios between 10 to 100 per wavelength pixel. We find that for S/N $\geq$ 50, this technique can yield ages of SSPs to an overall precision of $Δ\,\mbox{log(age/yr)} \sim 0.1$ for ages in the ranges 7.0 $\leq$ log (age/yr) $\leq$ 8.3 and 8.9 $\leq$ log (age/yr) $\leq$ 9.4. For the age ranges of 8.3 $\leq$ log (age/yr) $\leq$ 8.9 and log (age/yr) $\geq$ 9.5, which have significant flux contributions from asymptotic giant branch (AGB) and red giant branch (RGB) stars, respectively, the age uncertainty rises to about $\pm 0.3$ dex. The precision of age and metallicity estimation using this method depends significantly on the S/N and the wavelength range used in the fitting. We quantify the systematic differences in age predicted by the MIST and Padova isochrone models, due to their different assumptions about stellar physics in various important (i.e., luminous) phases of stellar evolution, which needs to be taken in consideration when comparing ages of star clusters obtained using these popular models. Knowing the strengths and limitations of this technique is crucial in interpreting the results obtained for real star clusters and for deciding the optimal instrument setup before performing the observations.