论文标题
由声石墨烯等血浆揭示的金属的量子表面反应
Quantum Surface-Response of Metals Revealed by Acoustic Graphene Plasmons
论文作者
论文摘要
对材料的电磁响应的定量理解对于最大,多功能和可控的光 - 物质相互作用的精确工程至关重要。尤其是材料表面是增强电磁相互作用和调整化学过程的突出平台。然而,在深纳米级,电子系统的电磁响应受到材料界面处的量子表面反应的显着影响,这在使用标准光学技术探测方面具有挑战性。在这里,我们展示了如何使用石墨烯 - 二极管 - 金属结构中的超构造原声石墨烯等离子体(AGP)来探测附近金属的量子表面响应功能,这些函数通过所谓的feibelman $ d $ -parameters进行了编码。基于我们的理论形式主义,我们引入了一个具体的建议,用于从实验中推断出AGPS分散体的量子变化的金属的低频量子响应,并证明AGP的高场限制可以在本质上解决量子量子机械长度尺度的本质上,并通过子纳光度分辨率解决。我们的发现揭示了一种有希望的方案来探测金属的量子响应,并进一步表明将AGP用作具有Ångström规模准确性的等离激子统治者。
A quantitative understanding of the electromagnetic response of materials is essential for the precise engineering of maximal, versatile, and controllable light--matter interactions. Material surfaces, in particular, are prominent platforms for enhancing electromagnetic interactions and for tailoring chemical processes. However, at the deep nanoscale, the electromagnetic response of electron systems is significantly impacted by quantum surface-response at material interfaces, which is challenging to probe using standard optical techniques. Here, we show how ultra-confined acoustic graphene plasmons (AGPs) in graphene--dielectric--metal structures can be used to probe the quantum surface-response functions of nearby metals, here encoded through the so-called Feibelman $d$-parameters. Based on our theoretical formalism, we introduce a concrete proposal for experimentally inferring the low-frequency quantum response of metals from quantum shifts of the AGPs' dispersion, and demonstrate that the high field confinement of AGPs can resolve intrinsically quantum mechanical electronic length-scales with subnanometer resolution. Our findings reveal a promising scheme to probe the quantum response of metals, and further suggest the utilization of AGPs as plasmon rulers with ångström-scale accuracy.