论文标题
拉格朗日数字的总和
The sum of Lagrange numbers
论文作者
论文摘要
将麦克沙恩在双曲线穿刺的圆环与施穆茨在马尔可夫唯一性猜想(MUC)上的工作结合在一起,我们发现MUC与身份\ begin {equation} \ sum_ {n = 1}^\ sum_ {equation} \ sum_ { \ end {equation}其中$ l_n $是$ n $ th lagrange编号,$φ= \ frac {1+ \ sqrt5} 2 $是黄金比率。
Combining McShane's identity on a hyperbolic punctured torus with Schmutz's work on the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity \begin{equation} \sum_{n=1}^\infty \, \left( 3- L_n \right) \, = \, 4 - φ- \sqrt 2 \end{equation} where $L_n$ is the $n$th Lagrange number and $φ=\frac{1+\sqrt5}2$ is the golden ratio.