论文标题
河马:最佳多项式投影的复发记忆
HiPPO: Recurrent Memory with Optimal Polynomial Projections
论文作者
论文摘要
从顺序数据中学习的一个核心问题是随着更多数据的处理,以增量方式代表累积历史。我们引入了一个通用框架(HIPPO),以通过投影到多项式碱基上,以在线压缩连续信号和离散时间序列。考虑到一个指定过去每个时间步骤的重要性的度量,河马为自然在线功能近似问题提供了最佳解决方案。作为特殊情况,我们的框架从第一原则中产生了最近的Legendre存储单元(LMU)的简短推导,并概括了诸如GRUS等经常性神经网络的无处不在的门控机制。这个正式的框架产生了一种新的内存更新机制(Hippo-Legs),该机制会随着时间的流逝而扩展以记住所有历史记录,避免了时间尺度上的先验。 Hippo-Legs享有时尺鲁棒性,快速更新和有限梯度的理论优势。通过将记忆动力学纳入复发性神经网络中,河马RNN可以通过经验捕获复杂的时间依赖性。在基准排列的MNIST数据集上,河马腿将新的最新精度设置为98.3%。最后,在新的轨迹分类任务测试对分布时间表和缺少数据的鲁棒性测试中,河马腿的表现优于RNN和Neural Ode Baselines的精度为25-40%。
A central problem in learning from sequential data is representing cumulative history in an incremental fashion as more data is processed. We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by projection onto polynomial bases. Given a measure that specifies the importance of each time step in the past, HiPPO produces an optimal solution to a natural online function approximation problem. As special cases, our framework yields a short derivation of the recent Legendre Memory Unit (LMU) from first principles, and generalizes the ubiquitous gating mechanism of recurrent neural networks such as GRUs. This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to remember all history, avoiding priors on the timescale. HiPPO-LegS enjoys the theoretical benefits of timescale robustness, fast updates, and bounded gradients. By incorporating the memory dynamics into recurrent neural networks, HiPPO RNNs can empirically capture complex temporal dependencies. On the benchmark permuted MNIST dataset, HiPPO-LegS sets a new state-of-the-art accuracy of 98.3%. Finally, on a novel trajectory classification task testing robustness to out-of-distribution timescales and missing data, HiPPO-LegS outperforms RNN and neural ODE baselines by 25-40% accuracy.